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Abstract

Urbanization is increasing globally, fragmenting habitats and prompting human-wildlife conflict. Urban wildlife research is
concurrently expanding, but sampling methods are often biased towards large and intact habitats in public green spaces,
neglecting the far more abundant, but degraded, habitats in the urban matrix. Here, we introduce the Five P’s of Urban
Ecology—Partnerships, Planning, Placements, Public participation and Processing—as a path to overcoming the logistical bar-
riers often associated with camera-trapping in the urban matrix. Though the Five P’s can be applied to a variety of urban sam-
pling methods, we showcase the camera-trapping efforts of the DC Cat Count project in Washington, DC, as a case study. We
compared occupancy models for eight urban mammal species using broad categorizations of land cover and local land use to
determine drivers of mammal occurrence within the urban matrix as compared with urban habitat patches. Many native
species maintained a strong association with large, semi-natural green spaces, but occupancy was not limited to these loca-
tions, and in some cases, the use of private yards and the built environment were not notably different. Furthermore, some
species exhibited higher occupancy probabilities in developed areas over green spaces. Though seemingly intuitive, we offer
advice on how to greatly reduce habitat-biased sampling methods in urban wildlife research and illustrate the importance of
doing so to ensure accurate results that support the formation of effective urban planning and policy.
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Introduction and locations of observations, without the negative effects of
human presence and allow for collection of reliable data on elu-
sive, rare, and nocturnal species (McShea et al. 2016). To date,
several studies have investigated urban mammal communities,
often documenting unprecedented levels of diversity across

Since 1970, the study of urban wildlife has become increasingly
common (Magle et al. 2012), partially due to the advancements
of noninvasive camera traps to document the distribution and
behavior of diverse urban taxa (Caravaggi et al. 2017; Anton anthropogenic landscapes and uncovering unexpected urban

et al. 2018; Magle et al. 2019). Camera traps collect wildlife animal interactions (Gallo et al. 2017; Mueller et al. 2018;
images and record pertinent metadata such as the date, time Parsons et al. 2018; Mowry and Wilson 2019).
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Though there are numerous methods of classifying urban
areas, a review of urban wildlife literature revealed that most
research defines a site’s degree of urbanization by its surround-
ing structures (Moll et al. 2019). Sanwick et al. (2003) propose
that the urban structural landscape can be broadly categorized
into buildings and the space around them, called the external
environment. The external environment comprised gray or
green space, defined by the prevalence of impermeable surfa-
ces. Both gray and green space can be further classified by its
function rather than structure (Fig. 1). Under this system, many
locations can be classified as green space despite vastly differ-
ent land management. For instance, cemeteries and forest pre-
serves are both considered green space under this definition.
While both support wildlife, they differ in the quality of habitat
and the species composition (Gallo et al. 2017). Since the func-
tion and structure of urban green spaces can vary broadly, using
a binary system to classify urban spaces as green or gray
imposes limitations on our understanding of urban ecosystems.
This limitation can be addressed by studying urban wildlife
populations through the lens of landscape ecology, which con-
textualizes the biodiversity in habitat patches by exploring hab-
itat connectedness.

In their foundational research of landscape ecology, Forman
and Godron (1981) describe habitat patches as areas of similar
structural habitat surrounded by a dissimilar structural habitat,
referred to as the matrix. Patches may be isolated within the
matrix or connected by corridors that facilitate the movement
of species between patches (Forman and Godron 1981; Turner
1989). In areas altered by anthropogenic development, habitat
patches are typically associated with semi-natural spaces, or
spaces with little human development relative to the
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surrounding environment (Krosby et al. 2015). Since the green
space that surrounds these patches, such as drainage ditches or
hedgerows, may share structural similarities with the larger
patches they connect, they have the potential to operate both
as corridors and habitats (Forman and Godron 1981). Through
this lens, we propose that urban habitat patches and corridors
be described as large or linear patches of similarly structured ur-
ban green space that sustain populations of wildlife (e.g. large
parks and nature reserves), and the urban matrix is the sur-
rounding, dissimilar, and often developed, environment. While
the urban matrix includes features such as roads and alleys, it
also includes green space that is not traditionally considered
habitat for many species, such as residential yards, landscaped
medians and vacant lots (Fig. 2).

Many urban wildlife studies focus on such habitat patches
and corridors (Hegglin et al. 2004; George and Crooks, 2006;
Roberts et al. 2006; Cove et al. 2012; Chupp et al. 2013; Saito and
Koike, 2013; Schuette et al. 2014; Wang et al. 2015; Jones et al.
2016; Ehlers Smith et al. 2018; Moll et al. 2018, 2020; Schmid
et al. 2018; Gallo et al. 2019; Mowry and Wilson, 2019). However,
the departure of individuals from patches and corridors into the
matrix is a documented behavior in non-urban systems
(Baguette and Van Dyck 2007; Revilla and Wiegand 2008), sug-
gesting that structural patch connectivity is not necessarily in-
dicative of functional patch connectivity (Berger-Tal and Saltz
2019). It is reasonable to assume that, to some extent, wildlife
occupancy in the urban matrix exists as well; however, few
studies have investigated this directly (Kays and Parsons 2014;
Schmid et al. 2018; Dorning and Harris 2019; Parsons et al. 2019).
Studying how species use the urban matrix can offer insight
into the differences between urban structural and functional
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Figure 1: Diagram of the urban landscape classifications as proposed by Sanwick et al. (2003). Dark green land indicates landcover traditionally considered urban habi-
tat, while light green land indicates green space not traditionally considered habitat. Some overlap exists between these categorizations depending on the city, and the

physical structure of the landcover. Gray indicates impervious surfaces and buildings.
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Figure 2: Camera traps deployed across Washington, DC (2018-2019) in both gray space and green spaces with accompanying photos of four different deployment types
and the resulting wildlife observations: Virginia opossum (Didelphis virginiana) from a private yard, bobcat (Lynx rufus) from a semi-natural green space, red foxes
(Vulpes vulpes) from an alley, and eastern gray squirrel (Sciurus carolinensis) from a public park.

connectivity and potentially inform conservation-minded urban
planning. Despite the opportunity for such gains, urban ecolo-
gists often focus their sampling efforts in habitat patches rather
than the matrix, especially when using camera traps. Even
when studying species that maintain a strong association with
heavily developed areas and human population density (e.g.,
domestic cats [Felis catus]), previous research has largely focused
on sampling large public green spaces (Bengsen et al. 2011; Cove
et al. 2018; Hansen et al. 2018) or radio-collared individuals
(Gehrt et al. 2013; Hanmer et al. 2017; Kays et al. 2020a), rather
than using camera traps to sample the urban matrix, where do-
mestic cat occurrence is presumably highest.

Restricting urban ecological research to large patches of
green spaces is problematic for multiple reasons. Importantly,
this sampling strategy excludes the most abundant land uses of
urban areas (Cerra 2017; Dyson et al. 2019). Thus, our knowledge
of the ecological processes in a land cover that poorly repre-
sents urban areas is imposed upon the rest of the ecosystem,
potentially leading to biased inferences about urban wildlife
populations and ill-informed wildlife policy (McCance et al.
2017). This limited approach obscures differences in species’
responses to urbanization and the implications these responses
may have on future urban planning (Cove et al. 2019). For exam-
ple, exclusive sampling of sizable urban habitat patches may
lead to the false assumption that all species detected are
equally suited to live in urban areas, whereas additional sam-
pling in the matrix could reveal species-specific differences in

dispersal ability and thereby differences in their resiliency to
disturbance and habitat fragmentation. Additionally, research
that disproportionately studies wildlife in relatively large urban
green spaces may contribute to the misconception that wildlife
‘belong’ exclusively in these spaces, unintentionally portray
animals outside of parks as unwelcome (McCance et al. 2017,
Hunold 2019). Finally, disproportionate sampling in urban green
spaces may not adequately reflect some of the ecological
impacts of urbanites themselves. Cities foster a patchwork of
human densities and cultures, and the resulting ecological
landscape can be as diverse as the social landscape that drives
it. Household factors such as resident lifestyle and family dem-
ographics, housing age, socioeconomic status, and geographic
position in the urban matrix itself have all been found to impact
local vegetative cover (Grove et al. 2006; Knapp et al. 2012;
McPhearson et al. 2013; Ehlers Smith et al. 2018; Fernandez et al.
2019; Schell et al. 2020), which likely influence wildlife commu-
nities and their trophic interactions (Faeth et al. 2005; Evans
et al. 2017). Though these factors can be included as landscape
variables for studies within relatively large green spaces such as
parks, Moll et al. (2020) suggest that species-specific responses
to urbanization may be lost if the scale of the variable is not pro-
portional to the scale of the species’ response.

Beyond gaining an understanding of the impacts of hetero-
geneous human-driven factors (e.g. differences in landscaping
along a single city block) on wildlife, sampling the urban matrix
offers social benefits as well. Urban residents are increasingly
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disconnected from the nature, but including urban residents in
environmental research can lead to increased knowledge of and
care for the natural world by creating opportunities for informal
science education (Bonney et al. 2009; Schuttler et al. 2018).
Studies that engage volunteers in data collection pertaining to
wildlife found that participants show an increase in scientific
literacy and a greater awareness of the species or ecosystems
that they helped monitor (Brossard et al. 2005; Mitchell et al.
2017). In a literature review of the outcomes of public participa-
tion in ecological research, Schuttler et al. (2018) identify that
most participants report having an interest in nature prior to
their involvement in research, and call for the intentional in-
volvement of those who do not already share this view.
Sampling private residences presents a possible path to achieve
this by offering residents who may not be interested in ecology
an opportunity to participate in environmental research that
does not require significant investment of their time or
resources.

Nevertheless, sampling the urban matrix presents a unique
set of challenges, including obtaining permission to work on
private land, regularly interacting with the public, collecting an
abundance of non-animal photographs, and equipment theft or
damage. These challenges often discourage ecologists from con-
ducting research in the urban matrix, especially if they are new
to the field of urban ecology (Dyson et al. 2019). However, these
barriers can be overcome by using what we term the Five P’s of
urban ecology, which include partnerships, planning, place-
ments, public participation and processing. Though this ap-
proach may seem intuitive, we have found mindful adherence
to these principles yields a successful sampling strategy and is
beneficial for both researchers and the public. Here, we give a
broad overview of the Five P’s and showcase their application in
a case study from the DC Cat Count, a survey of free-roaming
cats and urban wildlife throughout Washington DC.

Partnerships

Ownership of urban land is split amongst numerous parties,
necessitating a network of partnerships to adequately sample
the urban matrix. Local institutions typical in governments,
such as departments of transportation, libraries and fire and
police departments, are all organizations grounded in the com-
munity—making them helpful partners. Such organizations are
likely to own or manage multiple properties across the urban
matrix, which can provide researchers with access to a wealth
of sampling sites under one agreement. Partnering with home-
owners and local businesses in the areas between institution-
ally owned properties can ensure adequate coverage of the
entire urban matrix.

Private land is typically highly accessible, and cameras left
on private lands are generally less likely to be disturbed or sto-
len than cameras left on public land (Dyson et al. 2019).
However, establishing private partnerships often requires a dif-
ferent approach than is needed to establish public partnerships.
Targeted outreach to institutions, businesses and residents is
often as time-consuming as it is necessary. A variety of
methods can be used to engage residents, including cold calls,
community newsletters, community meetings, direct mail/can-
vassing or by posting a link to sign up via social media. We have
found social media and cold calls to be the most productive
methods for engaging residents, while the remaining methods
of contact brought mixed success. Leaving informational flyers
in residential neighborhoods yielded the fewest residential
deployments of any method. Knocking on doors and directly

speaking with residents proved an extremely successful means
of bolstering residential placements. However, this method is
time-intensive and often requires outreach performed outside
of typical business hours. We found speaking at community
meetings to be the most efficient means of in-person outreach.
Highlighting a locally appropriate flagship species to represent
your project may further engender public support and participa-
tion (Bowen-Jones and Entwistle 2002). For example, the DC Cat
Count is a cat-focused project with neutral messaging
(Flockhart et al. In press). As a result, residents who care for out-
door cats, as well as residents who hold negative opinions of
outdoor cats, are both particularly interested in participating. It
is not uncommon for cooperating partners to express initial in-
terest in the project, but not engage beyond their initial interest.
To accommodate this, we recommend identifying and engaging
roughly 20% more sampling sites than are needed.

It is in the best interest of all parties involved to receive writ-
ten permission prior to conducting fieldwork on private prop-
erty (Dyson et al. 2019). We recommend creating a standard
document that contains the cooperating partner’s name and ad-
dress, researchers’ name and affiliation, details about the pur-
pose of the project, description of the sampling method,
sampling dates, acknowledgment of how the data will be used,
and signature line. Legal protection of both the private sampling
site and research equipment can also be included in this form
and may be required by some entities (e.g. indemnification
clauses; ‘additional insured’ and hold harmless agreements).
Due to the varying technological comfortability of the general
public, be prepared to email a printable version of this docu-
ment (i.e. PDF), text or email a digital copy that can be signed
without the use of specific applications or programs (e.g.
Survey123, Google Forms), or mail a hard copy of the form with
return postage. Regardless of the format, it is best practice to
digitize and store the responses in the same location and to
have them accessible during fieldwork. It is not uncommon for
large institutions to maintain their own organization-specific
permitting system. If this is the case, it is often easiest to work
within the organization’s permitting process rather than using
the project-specific permission forms. These permits often in-
clude space (e.g. comment section) to incorporate specific lan-
guage from the project-specific permit such as an
acknowledgment of how the data will be used, etc.

Depending on the partnering organization, we recommend
checking in with the appropriate personnel and presenting
these permits upon arrival for fieldwork. Doing so increases
transparency and builds a relationship between the landholder
and the researcher. In some cases, researchers will be joined by
a liaison or resident from the partnering landholder for field-
work on their property. When accompanied by a liaison, sched-
ule or confirm the date and time of return with the liaison prior
to leaving the property to ensure that they will be available, if
necessary, to retrieve the cameras. In other cases, such as sam-
pling utility poles, checking in with the governing body after the
permits have been obtained is generally not necessary. It is not
uncommon for landholders to wish to see the photos taken on
their property. When requested, we recommend cooperating
when possible, but advice being explicit about what can and
cannot be shared (e.g. photos of endangered species, data
embargos).

Planning

We recommend keeping a database of potential camera sites
that can be used to keep track of the cooperating partners’
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progress in the paperwork process (e.g. permission form sent,
permission form signed). This database should also include the
cooperating partners’ contact information and specific instruc-
tions, such as details on how to enter the property, or condi-
tions for camera placements. While it is appropriate for some of
the information contained within the camera site database to
be associated with the wildlife observations at that site (e.g. site
treatment, geographic coordinates, bait type), information that
compromises the privacy of the site owner (e.g. property own-
er’s name, email address) should not be associated with the
resulting dataset to ensure the privacy of the cooperating part-
ner. As part of the DC Cat Count, we developed a database using
ArcGIS Online and Survey123, a form-based survey application
created by Environmental Systems Research Institute. This sys-
tem uses an online form for potential partners to express inter-
est in hosting a camera and plots their location on an internal
map. Field technicians use a similar form when placing a cam-
era to keep track of pertinent metadata, which automatically
plots each camera and its status (e.g. deployed, needs review) to
the same map. The code for this program, called FELINe (Field
Equipment Location and Information Network), can be found in
Supporting Document 1. With a limited knowledge of Microsoft
Excel, this online application can be adapted to record variables
not included in our study but may be needed for other urban
camera trapping projects.

Prior to fieldwork, consider creating a fieldwork plan that
outlines the sampling areas that will be visited and the contact
information for any cooperating partners that may be involved.
Site-specific information (access codes for gated properties, etc.)
from cooperating partners can also be incorporated here. We
have found it especially helpful to include detailed instructions
for travel to and between field sites, which can help researchers
navigate unfamiliar areas or avoid routes that are temporarily
closed due to construction. Researchers may also wish to in-
clude listing parking locations, public restrooms, and cooling
and warming stations if conducting fieldwork in extreme
weather. If using handheld GPS units, it can be helpful to create
reference points for each address beforehand and to include
these in the field plan. For the safety of those conducting field-
work, consider sharing your plan with a trusted colleague prior
to engaging in fieldwork. This type of plan can be especially
helpful to studies that frequently sample new sites. However,
not all studies will benefit from this type of planning.

Placements

Considerations when setting cameras in the matrix vary
depending on the study objectives. When placing cameras in
alleyways or sidewalks, be sure to set the camera out of the hu-
man eyeline when possible. Setting cameras low or high off the
ground can reduce the chances of passersby noticing and tam-
pering with them. Cameras with a white flash should not be
used in areas where people will be driving, as the flash may dis-
tract or impair the driver and put them and others at risk. If set-
ting the camera on a utility pole, look for signs of collisions (e.g.
rub marks, paint chips) or other indications that the likelihood
of a vehicle hitting a camera is high. Avoid placing cameras on
utility poles in narrow alleys when possible. In the United
States, individuals forego their right to privacy when on public
property, as well as when they can be seen on private property
from public property. Thus, it is legal to photograph humans in
public spaces without the express approval of each individual,
unless a local ordinance specifically prohibits it (Wright 2015;
Krages 2017). However, to maintain the privacy of passersby, we
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recommend setting cameras low to the ground to avoid photo-
graphing human faces. Researchers should always investigate
local ordinances and obtain the proper permits before placing
any camera on public property.

When setting cameras on private property, adhere to any
conditions given by the landholder. If setting a camera that
faces a private home, be cognizant of disturbances caused by
white flash. Regardless of flash type, avoid setting cameras that
will shoot into windows. Not all yards will present clear paths
for wildlife. In these cases, it is best to set the camera near a
hole in a fence or shoot across the yard to maximize the chan-
ces of documenting wildlife. Some cooperating partners have
bait present on their property (e.g. bird feeders, compost piles,
cat food). Consider the type and volume of photos you wish to
collect if setting cameras around anthropogenic baits. Studies
specifically investigating bait site phenomena may benefit from
a camera aimed directly at the bait since it is likely that food
versus scent lures have varying effects on wildlife detections.
For studies not investigating bait site phenomena, we recom-
mend setting cameras that will document animals walking to
and from the bait but will not take copious photos of animals at
bait. Recording presence of bait at sampling sites is necessary
for eventual analyses.

Theft and vandalism can be shockingly low in the urban ma-
trix; in our experience, less than 2% of deployments saw theft or
vandalism. This amount is consistent with other urban camera
trapping projects (Magle et al. 2019). Of the stolen or damaged
cameras, 32% were white flash cameras and remaining 68%
were infrared. A higher proportion of infrared cameras dis-
played evidence of having been hit by vehicles, whereas a
higher proportion of white flash cameras displayed evidence of
purposeful vandalism. It is best practice to always secure cam-
eras using cable locks and place an asset tag on each camera
that includes the project name, investigator and contact
information.

Public participation

Public participation in scientific research can be broadly defined
as a collaboration between volunteers and scientists to contrib-
ute to meaningful research (Cohn 2008; Trimboli and Toomey
2016). While this partnership may be referred to by multiple
names (e.g. citizen science), for continuity purposes, we refer to
it as ‘public participation’. Public participation expands the po-
tential for valuable large-scale data collection, while simulta-
neously increasing public involvement and interest in the
scientific processes and research methods (Brossard et al. 2005;
Cohn 2008; Dickinson et al. 2012; Mulligan et al. 2015). We have
found public participation to greatly contribute to data collec-
tion and photo processing, owing to local knowledge and acces-
sibility to valuable sampling sites.

Engaging with the public, whether it be conversations with
passersby regarding our cameras, distributing flyers at commu-
nity events, or conversing with volunteer camera hosts on their
private properties, has provided a mutually beneficial platform
for sharing information and fostering community relationships.
Members of the public are often eager to share information
about the species they have seen in the area, when asked. This
information can provide valuable insight into where cameras
should be set and aimed. After including residents in the place-
ment process, we have anecdotally found that residents are
more likely to express interest in the results of the study.
Engaging members of the public and encouraging their input
and involvement in research can lead to increased interest,

120z Aenuep zgz uo 1sanb Aq 0625019/9¢0eeNl/L///3101e/anljwod dno-olwapede//:sdiy woly papeojumoq



6 | Journal of Urban Ecology, 2021, Vol. 6, No. 1

support and knowledge of the scientific processes and ecologi-
cal questions at hand, particularly if they feel a personal con-
nection to the research in their community (Rovero et al. 2013;
Trimboli and Toomey 2016). These interactions, even as isolated
incidents, can provide meaningful information for all parties.

The volume of camera deployments and triggers creates an
overwhelming backlog of photo processing. Although onboard-
ing and training new volunteers in deploying cameras and proc-
essing photos requires staff time and management, it expands
the possibilities of large-scale camera trapping efforts, and
helps manage the backlog of photos (McShea et al. 2016;
Trimboli and Toomey 2016). Time and attention to volunteer
training depends on the complexity of the task; but, deploying
cameras and processing photos, once sufficiently explained and
demonstrated, can be reliably and accurately supplemented by
public participation (Cohn 2008; Trimboli and Toomey 2016).
McShea et al. (2016) found that properly trained members of the
public were able to deploy camera traps correctly 94% of the
time and identify species accurately 90% of the time, though ac-
curacy decreased for sympatric congeners. The likelihood of
misidentification can be reduced by using a multi-stage verifica-
tion process. Given that individuals are choosing to volunteer
their time, we are careful to assign relatively small deploy-
ments, and only increase the frequency or length of their
assignments if requested. Photo processing can also utilize pub-
lic participation via online platforms that allow volunteers to re-
view photographs online (e.g. Zooniverse; Simpson et al. 2014).
This approach allows volunteers to assist in photo processing
regardless of their physical location or personal schedule, which
cannot be overcome as easily when using in-person photo proc-
essing during business hours.

We have had success recruiting volunteers through intra-
organization volunteer emails, but posting on social media,
local list-serves, science volunteer boards or newspapers can
also be effective means of outreach. We highly recommend
investing time into recruiting, training and managing volun-
teers in order to collect and process robust data that could not
be achieved by staff scientists alone. Public involvement can in-
crease awareness and appreciation of urban wildlife, increase
the understanding and importance of research and scientific
processes and provide extensive reliable data that can ulti-
mately be published (Brossard et al. 2005; Dickinson et al. 2012;
Mulligan et al. 2015).

Processing

Sampling in the urban matrix poses the daunting task of sorting
through thousands of photos triggered by humans and vehicles.
Although this high volume of photos, particularly in alleys,
sidewalks and walking trails, is equally undesirable and inevita-
ble, it is necessary for successful and representative sampling.
Careful thought on specific deployments within these areas can
help manage this to a degree. We recommend a review of avail-
able photo-processing software to assess its ability to provide
important data variables and program capabilities that are iden-
tified for a specific project. Ivan and Newkirk (2016) and Young
et al. (2018) published reviews of 7 and 12 known photo-
processing programs, respectively, that were assessed against a
range of characteristics and data variables. Due to a lack of
standardized data management software, many programs are
developed to meet their own specific project requirements, and
have varying capabilities tailored for those projects (Forrester
et al. 2016; Thomson et al. 2018). Moving forward, it will be ad-
vantageous to create a standardized software management

program that can meet the diverse requirements for all camera-
trapping efforts in order to allow consistent collaboration and
comparison among projects (Forrester et al. 2016; Young et al.
2018). Members of the public can assist with photo tagging and
will greatly contribute to the efficiency of photo-processing and
reduce the backlog of data. Due to the volume of photos being
manually sorted, we emphasize the importance of having mul-
tiple review steps to ensure data accuracy.

There have been multiple attempts, with mixed success, to
develop automatic species recognition processes (Yu et al. 2013;
Swinnen et al. 2014; McShea et al. 2016; Norouzzadeh et al.
2018). Norouzzadeh et al. (2018) proposed that deep neural net-
works can save a large percentage of human time and labor by
automatically identifying empty images versus images with
animals, accepting information from images that the deep
learning network has high confidence in, and providing humans
with a ‘top five’ list of suggestions of species to choose from.
Although fully automating the task of tagging photos is not cur-
rently a reliable or feasible option, artificial intelligence can po-
tentially assist in photo-tagging by recognizing and discarding
certain photos at high confidence levels (misfires, humans,
vehicles) and allow for more efficient photo-processing
(Swinnen et al. 2014; McShea et al. 2016; Norouzzadeh et al.
2018). A critical analysis of this approach may be warranted, as
this could result in the loss of data pertaining to the presence of
factors that may help explain animal occupancy and behavior
(e.g. humans and vehicles). Regardless, as artificial intelligence
continues to develop, the reduction of photos that are currently
present in such high volume may allow sampling in the urban
matrix to become a less daunting task.

While the challenges presented by urban field work can seem
intimidating, we have found that the Five P’s of urban ecology can
provide a targeted and intentional approach to fieldwork. Through
the DC Cat Count, a city-wide effort to estimate the outdoor cat
population in Washington, DC (Flockhart et al. In press), we have
deployed camera traps at over 1000 urban locations—most
of which occur within the urban matrix. To demonstrate the
importance of sampling beyond large urban green spaces to
understanding the complexities of urban ecosystems, we used
occupancy models to examine the differences in the distributions
of eight representative mammals of urban ecosystems, across the
urban matrix and green space gradient, while accounting for im-
perfect detection (MacKenzie et al. 2017).

Materials and methods
Case study: the DC Cat Count

The DC Cat Count is a 3-year collaborative study aiming to esti-
mate the total cat population in Washington, DC including in-
door, shelter and outdoor cat populations and to understand
the movement of cats among these populations via human
interventions such as adoption and abandonment (Flockhart
et al. In press). Camera-trapping is the primary survey method
for estimating the free-ranging cat population and will subse-
quently help inform data-driven population management and
points of effective intervention. To illustrate how the Five P’s of
urban ecology facilitated our sampling effort, we have stratified
the methods by each principle and describe planning before
partnerships for the benefit of the reader.

Planning

We used land cover and US census data to stratify Washington,
DC into 400x400 m cells and categorized each cell by its
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Table 1: Proportions of sampling cells and sampling efforts across the 2018 and 2019 sampling seasons.

Sampling cell type Prevalence of Proportion of Number of Proportion of
cell type in city cell type sampled deployments in cameras stolen/
each cell type vandalized in cell type

Low income x undeveloped 0.78% 0.00% 0 0.00%

Low income x intermediate 15.5% 2.63% 30 0.00%
development

Low income x high development 6.2% 5.26% 67 0.00%

Medium income x undeveloped 8.53% 10.53% 105 0.19%

Medium income x intermediate 29.46% 28.85% 331 0.28%
development

Medium income x high development 15.50% 26.32% 288 0.85%

High income x undeveloped 13.95% 21.05% 181 0.00%

High income x intermediate 9.30% 5.26% 57 0.00%
development

High income x high development 0.78% 0.00% 0 0.00%

Discrepancy between cell type abundance and sampling efforts were addressed in the 2020 sampling season, but data were not included in current analyses.

predominant degree of urbanization (high development, inter-
mediate development, undeveloped/open) and predominant
relative household income (low income, medium income, high
income) based on data from the National Landcover Database
and US Census Bureau. We further examined patterns of
reported incidents of violent crime over the previous year using
a hotspot analysis (ArcMap 10.8; Scott and Warmerdam 2005).
Thirteen sampling cells contained violent crime density statisti-
cally above (99% confidence interval) the rest of Washington
and were excluded from our project. Due to limited time and
equipment, only a subset (n=212) of sampling cells were sur-
veyed throughout the project. Surveyed sampling cells were se-
lected in approximate proportion to their abundance in the city
(Table 1).

Partnerships

Access to privately-owned sites was primarily solicited via so-
cial media and cold calls, which accounted for 62% and 22% of
residential deployments, respectively. Newsletters, community
meetings, and canvassing comprised the remaining 16% of
deployment sites. We found that landholders returned signed
paperwork roughly 84% of the time, albeit many residents had
to be reminded several times before returning paperwork to al-
low property access. Sites were not used without the written
permission of the appropriate party.

Placements

Within designated sampling cells, we deployed a combination
of infrared-flash and white-flash camera traps (Reconyx
HyperFire 2, Reconyx Inc., 3828 Creekside Ln, Ste 2, Holmen,
WI 54636) 0.2-0.5 m off the ground, aimed perpendicular to a
likely animal pathway (e.g. dirt pathway, alley, along a fence
line) such that the flanks of detected animals would be
photographed for individual identification. Cameras captured
five consecutive photographs upon each trigger with no delay.
Multiple photographs of the same individual(s) taken in imme-
diate succession (<1minute apart) were considered single
detections. We rotated cameras through sampling cells and
deployed cameras for 15 days at a given site, with each deploy-
ment consisting of a single camera. We surveyed sampling
cells from September to December 2018 and April 2019 to
January 2020. Camera density across sampling cells varied

depending on public participation and viable placement
options, with as few as 10 cameras/km? and as many as 75
cameras/km? We avoided the use of any scent or food lure
but documented when a resident regularly left cat food near
the camera site.

Public participation

Cooperating partners were reminded of their participation via
email or phone call approximately 1 week prior to our arrival.
Residents were assured that they did not need to be present but
were invited to participate in the camera deployment if desired.
Specific instructions or requests from residents were primarily
received in response to this outreach. Volunteers aiding in
photo processing were recruited via emails to existing volunteer
networks at both the Humane Rescue Alliance and the
Smithsonian Conservation Biology Institute.

Processing

We uploaded all photos into eMammal, a camera-trap data
management system and photo repository developed by the
Smithsonian Institution (Zhao and McShea 2018, see also http://
emammal.si.edu). The eMammal platform provides software to
automatically import photos and associated standard meta-
data, with efficient means of viewing, tagging, and uploading
photos, multi-step review process to ensure data quality and
maximum accuracy, automatic archival of approved data, and
public access for viewing and analyzing data (McShea et al.
2016; Young et al. 2018). Following photo review, we created
daily detection histories for each camera trap site for eight ur-
ban mammals using the CamtrapR package (Niedballa et al.
2016) in program R: eastern chipmunk (Tamias striatus), eastern
cottontail (Sylvilagus floridanus), eastern gray squirrel (Sciurus
carolinensis), white-tailed deer (Odocoileus virginiana), Virginia
opossum (Didelphis virginiana), northern raccoon (Procyon lotor),
red fox (Vulpes vulpes) and brown rat (Rattus norvegicus).
Domestic cat and dog (Canis familiaris) were also regularly
detected but were not included in this analysis due to data sen-
sitivity and direct association with humans (i.e. leashed dogs),
respectively. Other species such as coyote (Canis latrans), bobcat
(Lynx rufus), North American river otter (Lontra canadensis),
muskrat (Ondatra zibethicus), southern flying squirrel (Glaucomys
volans), white-footed mouse (Peromyscus leucopus), house mouse
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(Mus musculus) and North American beaver (Castor canadensis)
were detected, but the resulting data were too sparse for
analyses.

Landscape variable and occupancy models

Cameras were assigned to either the warm (April-August) or
cold (September-January) season, based on their deployment
dates. For occupancy analyses, the urban landscape was further
classified into land cover and land use. Based on Sanwick et al.
(2003), we used gray space, semi-natural green space and func-
tional/amenity green space to describe land cover at a site.
Functional and amenity green spaces were defined as green
space that regularly received maintenance (e.g. landscaping) or
are otherwise not semi-natural and were considered regardless
of property ownership. To assess land use, we continued to use
gray space and semi-natural green space, but categorized sites
in functional and amenity green spaces into yards or parks
according to their ownership. Development density was catego-
rized to reflect low, intermediate and high levels of develop-
ment (undeveloped, low/medium development and high
development) based on the National Landcover Database classi-
fication that occupied the greatest proportion of the site’s sam-
pling cell (Wickham et al. 2014). We compared 11 a priori models
to predict the occupancy for each of the eight mammal species
while explicitly estimating the daily probability of detection due
to the elusive and cryptic nature of urban mammals. These
models were hierarchical and included a null model in which
covariates were not considered for the probability of site occu-
pancy (¥, e.g., site use) or probability of detection (p; [¥(.),p(.)]),
as well as a model in which seasonality was considered for p,
but not ¥ since none of the species observed are known to hi-
bernate. The seasonality-only model consistently provided
greater support than the null model, so all remaining models
considered seasonality on p, and each covariate on either ¥, p,
or both ¥ and p. We ranked models based on their AICc weights
and drew our inferences from top-supported models and con-
sidered habitat associations to be strong if the 95% confidence
intervals did not overlap each other (Burnham and Anderson
2002). All occupancy models were developed in the ‘unmarked’
package (Fiske and Chandler 2011).

Results

We deployed 1059 cameras in 148 sampling cells throughout
Washington, DC over two field seasons (2018-2019). The survey
effort resulted in 264 942 observations of 32 species detected
over 13 132 trapdays. Fifty-three percent of these cameras were
placed in urban green spaces, while the remaining 47% of place-
ments were in the urban matrix. Sixty-eight percent of cameras
were placed on public property (parks, forests, alleys, side-
walks), while the remaining 32% were placed on private prop-
erty (front yards, side yards, back yards, driveways, etc.).

We used data from 938 deployments in the occupancy analy-
ses due to camera malfunctions, theft, or inadequate site meta-
data (e.g. insufficient reporting of predominant groundcover).
Humans, false-triggers, and vehicles accounted for 30%, 21%
and 15% of all camera detections, respectively. The remaining
detections were primarily mammals (26%) and birds (6%). Of the
mammals detected, 55% of observations were native wildlife
and 35% were of non-native species including brown rats, house
mice and domestic cats and dogs. The remaining 10% (~3% of
total observations) were not identifiable to species (e.g. un-
known rodent species).

Occupancy of most species was associated with the degree
of development in its sampling cell (Table 2). However, rac-
coons, white-tailed deer and eastern chipmunks were more
strongly influenced by land use (Fig. 3). Most species were posi-
tively associated with undeveloped or semi-natural land.
Species’ association with semi-natural habitats was apparent
based on the occupancy probabilities for raccoons (¥ =
0.87 £ 0.02 SE), white-tailed deer (¥ = 0.82*+0.02 SE), eastern
gray squirrel (¥ = 0.93 = 0.02 SE) and red fox (¥ = 0.78 = 0.03 SE).
Despite low detections, this pattern was also apparent for east-
ern chipmunks (¥ = 0.19 +0.02 SE). White-tailed deer and red
foxes exhibited pronounced differences in their occupancy of
the remaining urban landscape, with deer showing a stronger
association with parks (¥ = 0.23 +0.04 SE) than yards and gray
space, and foxes exhibiting a stronger association with interme-
diate development (¥ = 0.30 = 0.03 SE) over high development
(¥ = 0.04+0.01 SE). The top model for eastern cottontails
yielded a nonsensical estimate, so we derived inferences from
the second ranking model that assumed constant occupancy
across sites (¥ = 0.13 + 0.02 SE).

Brown rats and Virginia opossums did not exhibit the high-
est occupancy in undeveloped areas. Virginia opossums were
most strongly associated with intermediate development (¥ =
0.38 = 0.03 SE), though this association was not notably different
from that of undeveloped areas (¥ = 0.35 + 0.07 SE). Brown rats
were the only species to be most strongly associated with high
development (¥ = 0.50 = 0.04 SE). Predictably, brown rat occu-
pancy fell in intermediate development (¥ = 0.44 + 0.03 SE) and
undeveloped areas (¥ = 0.01 = 0.01 SE).

Daily detection probability was similar between the warm
and cold seasons. However, since the majority of our sampling
occurs in the warm season, we report only the warm season
daily detection probabilities herein. Daily detection probability
was highest in semi-natural or undeveloped areas for raccoons
(P=0.47 =0.01 SE), white-tailed deer (P=0.30+0.01 SE) and
eastern gray squirrels (P =0.48 + 0.01 SE) compared to other land
covers, and highest in parks for eastern chipmunks
(P=0.69*+0.06 SE). The lowest detection probabilities for
Virginia opossums was in undeveloped areas (P =0.09 + 0.01 SE),
whereas lowest detection probabilities for eastern cottontails
was in areas with high development (P=0.001 + 0.001 SE). These
exceptions aside, detection probability was relatively constant
across habitat covariates for all species (Fig. 3).

Discussion

Mammals varied in their use of the urban landscape, corre-
sponding with previous research (Cove et al. 2019; Moll et al.
2020). For this analysis, we broadly defined green space as any
land predominantly covered in vegetation. We further stratified
green space by land use (semi-natural, park and yard) and land
cover (semi-natural and landscaped). In general, many of the
species display a strong habitat association with semi-natural
areas, reinforcing their role as habitat patches and emphasizing
the importance of the conservation and sampling of this type of
urban green space. However, use of the remainder of the matrix
varied by species. For instance, raccoon and white-tailed deer
site use was strongly associated with semi-natural areas, but
deer exhibited higher site use of parks than in yards or the de-
veloped environment, whereas raccoons used these sites inter-
changeably. Eastern gray squirrels were also more strongly
associated with semi-natural areas but remained common
across the remainder of the urban matrix.
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Table 2: Information distances from the top-ranking models based on Akaike Information Criterion (A AIC) for urban mammals across all models compared in occupancy [¥] (covariate), detection

probability [P] (covariate) notation.

A AIC: A AIC:

A AIC:

AAIC: Y

A AIC:
(),

A AIC:

A AIC:

A AIC:

A AIC:

A AIC:

Species (n

¥(development),

P(season +

¥(.),P(season +

¥(development),

P(season)

(land type),
P(season +

¥(land cover),
P(season)

¥(land use),

¥(.),P(season +
land use)

¥(land use),
P(season)

observations)

development)

P(season +

P(season +
land use)

P(season)

development)

land cover)

land cover)

97.41

314.15

142.45

8.84
8.59

239.14

138.00

0.00*
0.00*

229.14

138.92

387.09

Raccoon (6210)
White-tailed

98.77

258.02

112.55

353.76

82.05

71.45 327.03

526.40

Deer (5999)

Eastern

37.30

101.81

54.08 76.84 37.63 39.64

0.00*

55.48 37.26

103.29

Chipmunk (800)
Eastern Gray

0.00*

66.82

46.12 271.36

110.70

271.92

48.94

112.13

273.29

339.91

Squirrel (25 009)
Red Fox (1971)

Virginia

0.00*
0.00*

214.41

326.82 115.92 0.96
47.67

125.02

100.24

311.13

110.73

354.38

35.76

81.34

82.07

88.40

81.20

80.07

90.03

95.48

Opossum (1896)

Eastern

0.00*

5.25

37.59

89.06

86.72

97.04

91.55

87.37

98.89

94.55

Cottontail (726)

153.17 0.00*

123.69 91.55 9.72

122.46

73.69

199.47 124.16 103.55

Brown Rat (7729)

The top-ranking model for each species is denoted by an asterisk.
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Two species maintained different habitat associations and
displayed high site use of developed areas. Brown rat site use
was best predicted by the greatest levels of development den-
sity, which are typically the most under-sampled and challeng-
ing areas to survey. Thus, rodent management efforts are rarely
research-based, and rodent control could be largely ineffective
due to lack of ecological understanding of urban rats (Parsons
et al. 2017). More surprisingly, Virginia opossums showed a
higher site use of areas with intermediate development over
semi-natural areas. This may be due to the strong association
between urban opossums and proximity to water, which is
likely greater in low-density residential areas due to open gray
infrastructure, irrigation, etc. (Fidino et al. 2016; Wait and
Ahlers 2020). Exclusive sampling of semi-natural areas may
yield artificially low projections of urban opossum and rat dis-
tributions, if results are extrapolated beyond the areas sampled.
Accurately assessing these populations is especially critical for
public health, considering the emphasis placed on rats as car-
riers of zoonotic diseases (Strand and Lundkvist 2019; Dahmana
et al. 2020; Murray et al. 2020), and opossums as a natural
means of tick-borne illness mitigation (Keesing et al. 2006, 2009;
Ogden and Tsao 2009).

For most species included in this analysis, the relatively low
occupancy probabilities in non-natural habitat make it appeal-
ing to dismiss sampling the urban matrix. However, the present
occupancy probabilities in the urban matrix are comparable to
occupancy estimates from other surveys of natural habitats.
The estimated occupancy of eastern gray squirrels reported
herein the urban matrix (intermediate development: ¥ =
0.77 =0.02 SE; high development: 0.64 = 0.03 SE) is higher than
the estimated occupancy from forested conservation areas in
Missouri (¥ ~ 0.57) or Illinois (¥ ~ 0.20; Pease et al. 2019; Kays
et al. 2020b, respectively). Similarly, urban matrix occupancy of
red foxes (intermediate development: ¥ = 0.30*0.03) in
Washington, DC is roughly equal to red fox occupancy in a land-
scape of state-managed natural areas in southern Illinois (¥ =
0.26 = 0.04 SE) or along the central portion of the Appalachian
Trail Corridor in (¥ ~ 0.24; Erb et al 2012; Lesmeister et al. 2015).
We draw attention to these comparisons to illustrate that the ur-
ban matrix is not void of wildlife, but actually comparable in site
use across species in non-urban settings. Non-biased sampling of
habitat within urban landscapes allows for more well-informed
ecological research, a greater understanding of abundance and
overlap of wildlife within the urban matrix, and, ultimately,
more effective urban planning. Representative sampling within
urban environments will become increasingly more important
as further development and habitat fragmentation make natural,
undisturbed habitat scarcer and less connected.

Despite the importance of non-biased sampling, the logistic
constraints imposed by sampling urbanized areas are daunting
to many ecologists (Dyson et al. 2019). Through the DC Cat
Count, we have demonstrated that these barriers can be over-
come through the thoughtful adherence to the Five P’s of urban
ecology. Careful consideration for each of these principles
resulted in a robust sampling effort of habitats roughly propor-
tional to the landcover present in Washington, DC, and the
continued processing of our data despite the large quantity
of photos collected. In addition to the value provided to the
present study, this sampling strategy has yielded data that have
contributed to our understanding of urban food webs, as well
as our understanding of national trends in wildlife—further
supporting the applicability of this type of sampling for a wide
range of research questions (Cove et al. In press; Herrera and
Cove 2020).
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Figure 3. Estimated occupancy, detection probability and associated 95% confidence intervals plotted from each species’ top-ranking model. Maps of the same sam-
pling area depicting land use (top) and development (bottom) are also included for illustrative purposes. Land use was recorded in situ when each camera was
deployed. Each site was assigned a level of development based on the predominant degree of development within 400 x 400 m sampling cells.

Conclusions

Urban mammal occupancy varies across the landscape but is
not restricted to natural landcover. Indeed, most native mam-
mal species using intact urban green spaces also use other
more abundant landcovers in the urban matrix. Here, we show
that semi-natural areas in the urban environment are critical,
but we also suggest researchers elevate the rest of the city to be
viewed as potential habitat and corridors. Our analyses illus-
trate the importance of the entire urban landscape to many spe-
cies, as well as the need to include the entire urban matrix in
urban ecology research. We acknowledge that conducting
research in the urban matrix presents barriers uncommon in
other study systems. To help overcome these barriers, we devel-
oped the Five P’s of Urban Ecology to provide researchers with
an approach to overcome concerns about working in the urban
matrix, enabling sampling across the entirety of the urban
landscape and contributing to a greater understanding of
urban ecology—an insight greatly needed in a rapidly urbaniz-
ing world.
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